Viruses

Baylor, E.R., M.B. Baylor, D.C. Blanchard, Syzdek, L.D., Appel, C. 1977. Virus transfer from surf to wind. Science 198:575-580.

Borsheim, K.Y., Bratbak, G, & Heldal, M. 1990. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. Environ. Microbiol. 56:2731-2734.

Bratbak, G., Thingstad, F., & Heldal, M. 1994. Viruses and the microbial loop. Microb. Ecol. 28:209-221.

Dunnebacke, T.H. & Schuster, F.L. 1974. J. protozool. 21:327-329.

Hara, S., Terauchi, K., & Koike, I. 1991. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. 57:2731-2734.

Lindberg, A.A. 1973. Bacteriophage receptors.

Murray, A.G., Jackson, G.A. 1992. Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Mar. ecol. Prog. Ser. 89:103-116.

Paul, J.H., Jiang, S.C., & Rose, J.B. 1991. Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl. Environ. Microbiol 57:2197-2204.

Paul, J.H., Jiang, S.C., Rose, J.B, Kellogg, C.A., Dickson, L. 1993. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl. Environ. Microbiol. 59:718-724.

Peduzzi, P. & Weinbauer, M.G. 1993. The submicron size fraction of seawater containing high numbers of virus particles as bioactive agent in unicellular plankton community successions. J. Plank. Res. 15:1375-1386.

Suttle, C.A. 1994. The significance of viruses to mortality in aquatic microbial communites. Microb. Ecol. 28:237-243.

Temple, G.S., Ayling, P.D., & Wilkinson, S.G. 1986. Isolation and characterization of lipopolysaccharife-specific bacteriophage of Pseudomonas aeruginosa. Microbios 45:81-91.

Temple, G.S., Ayling, P.D. & Wilkinson, S.G. 1986. The role of lipopolysaccharide as a receptor for some bacteriophages of Pseudomonas aeruginosa. Microbios 45:93-104.

Wellings, F.M., Lewis, A.L., & Solbau, R.D. 1975. Demonstrations of virus in groundwater after effluent discharge onto soil. Appl. Environ. Microbiol. 29:751-757.

Wilcox, R.M. & Fuhrman, J.A. 1994. Bacterial viruses in coastal seawater: lytic rather than lysogenic production. Mar. Ecol. Prog. Ser. 114:35-45.

Yates, M.V. & Yates, S.R. 1988. Modeling microbial fate in the subsurface environment. CRC Critical Reviews in Environmental Control 17:307-344. (VIRUS SECTIONS ONLY).

Zachary, A. 1978. An ecological study of bacteriophages of Vibrio natriegens. Can J. Microbiol. 24:321-324.

 

Growth

Berges, J.A., Montagnes, D.J.S., Hurd, C.L., & Harrision, P.J. 1994. Fitting ecological and physiological data to rectangular hyperbolae: a comparison of methods using Monte Carlo simulations. Mar. Ecol. Prog. Ser. 114:175-183.

Button, D.K. 1991. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michalis constant. Appl. Environ. Microbiol. 57:2033-2038

Chesbro, W., Arbige, M., Eifert, R. 1990. When nutrient limitation places bacteria in the domains of slow growth: metabolic, morphologic and cell cycle behavior. FEMS Microbiol. Ecol. 74:103-120.

Chin-Leo, G. & Kirchman, D.L. 1990. Unbalanced growth in natural assemblages of marine bacterioplankton. Mar. Ecol. Prog. Ser. 63:1-8.

Jannasch, H.W. 1967. Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12:264-271.

Kjelleberg, S., Hermansson, M., & Mården, P. 1987. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Ann. Rev. Microbiol. 41:25-49.

Koch, A.L. 1988. Why can't a cell grow infintely fast? Can. J. Microbiol. 34:421-426.

Kurihara, Y. Shikano, S. & Toda, M. 1990. Trade-off between interspecific competitive ability and growth rate in bacteria. Ecology 71:645-650

Meers, J.L. 1973. Growth of bacteria in mixed cultures. CRC Critical Reviews in Microbiology.

Nelson, L.M. 1978. Effect of temperature, growth rate, and nutrient limitation on the yield and composition of three bacterial isolates from an arctic soil grown in continuous culture. Can. J. Microbiol. 24: 1452-1459.

Schut, F., P.A. Rudolf, & J.C. Gottschal. 1997. Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat. Microb. Ecol. 12:177-202.

Strumm-Zollinger, E. 1966. Effects of inhibition and repression on the utilization of substrates by heterogeneous bacterial communities. Appl. Microbiol. 14:654-664.

Wanner, U. & Egli, T. 1990. Dynamics of microbial growth and cell composition in batch culture. FEMS Microbiol. Rev. 75:19-44.

Vallino, J.J., C.S. Hopkinson, & J.E. Hobbie. 1996. Modeling bacterial utilization of dissolved organic matter: optimization replaces Monod growth kinetics. Limnol. Oceanogr. 41:1591-1609.

VanVerseveldt, H.W., W.R. Chesbro, & M. Braster. 1984. Eubacteria have 3 growth modes keyed to nutrient flow. Arch. Microbiol. 137:176-184.

 

Starvation

Amy, P.S. & Morita, R.Y. 1983. Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl. Environ. Microbiol. 45:1109-1115.

Amy, P.S. Pauling, C., & Morita, R.Y. 1983. Starvation-survival processes of a marine Vibrio. Appl. Environ. Microbiol. 45:1041-1048

Flärdh, K., Cohen, P.S. & Kjelleberg, S. 1992. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. J. Bacteriol. 174:6780-6788.

Harder, W. & Dijkhuizen, L. 1983. Physiological responses to nutrient limition. Ann. Rev. Microbiol. 37:1-23.

Hood, M.A., Gluckert, J.B., White, D.C. & Deck, F. 1986. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52:788-793.

Hood, M.A. & MacDonnell, M.T. 1987. Distribution of ultramicrobacteria in a gulf coast estuary and induction of ultramicrobacteria. Microb. Ecol. 14:113-127.

 

Mården, P., Hermansson, M., & Kjelleberg, S. 1988. Incorporation of tritiated thymidien by marine bacterial isolates when undergoing a starvation survival response. Arch. Microbiol. 149:427-432.

Mården, P., Nystrom, T., & Kjelleberg, S. 1987. Uptake of leucine by a marine Gram-negative heterotrophic bacterium during exposure to starvation conditions. FEMS Microbiol. Ecol. 45:233-241.

Morita, R.Y. 1986. Starvation-survival: the normal mode of most bacteria in the ocean. Proc. IV ISME 242-248.

Morita, R.Y. 1988. Bioavailability of energy and its relationship to growth and starvation survival in nature. Can. J. Microbiol. 34:436-441.

Moyer, C.L. & Morita, R.Y. 1989. Effect of growth rate and starvation-survival on cellular DNA, RNA, and protein of a psychrophilic marine bacterium. Appl. Environ. Microbiol. 55:2710-2716.

Nyström, T.,, Flärdh, K., & Kjelleberg, S. 1990. Responses to multiple-nutrient starvation in marine Vibrio CCUG 15956. J. Bacteriol. 172:7085-7097.

Nyström, T., Olsson, R.M., & Kjelleberg, S. 1992. Survival. stress resistance, and protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 58:55-65.

Sjogren, R.E. & Gibson, M.J. 1981. Bacterial survival in a dilute environment. Appl. Environ. Microbiol. 41:1331-1336.

Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. & Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-263.

Pomeroy, L.R. 1974. The ocean's food web: a changing paradigm. Bioscience 24:499-504.

 

Composition

Bratbak, G. & Dundas, I. 1984. Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 48:755-757.

Chrzanowski, T.H. & M. Kyle. 1996. Ratios of carbon, nitrogen and phosphorous in Pseudomonas fluorescens as a model for bacterial element ratios and nutrient regeneration. Aquat. Microb. Ecol. 10:115-122.

Fagerbakke, K.M., M. Heldeal, & S. Norland. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorous in native aquatic and cultured bacteria. Aquat. Microb. Ecol. 10:15-27.

Simon, M. & Azam, F. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51:201-213.

Monger, B. & Landry, M.R. 1993. Flow cytometric analysis of marine bacteria with Hoechst 33342. Appl. Environ. Microbiol. 59:905-911.

Kroer, N. 1994. Relationships between biovolume and carbon and nitrogen content of bacterioplankton. FEMS Microbiol. Ecol. 13:217-224.

 

Diversity

Amann, R.I., Stromley, J., Devereux, R., Key, R., & Stahl, D.A. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614-623.

Calhoun, A. & G.M. King. 1997. Regulation of root-associated methanotrophy by oxygen availablility in the rhizosphere of two aquatic macrophytes. Appl. Envion. Microbiol. 63:3051-3058.

Bowman, J.P. et al., 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:3068-3078.

DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. 89:5685-5689.

Devereux, R. & Mundfrom, G.W. 1994. A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl. Environ, Microbiol. 60:3437-3439.

Findlay, R.H., Trexler, M.B., Guckert, J.B., & White, D.C. 1990. Laboratory study of disturbance in marine sediments: response of a microbial community. 62:121-133.

Fuhrman, J.A., Lee, S.H., Masuchi, Y., Davis, A.A., & Wilcox, R.M. 1994. Characterization of marine prokaryotic communities via DNA and RNA. Microb. Ecol. 28:133-145.

Fuhrman, J.A., McCallum, K., & Davis, A.A. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59:1294-1302.

Garland, J.L. and A.L. Mills. 1991. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Appl. Environ. Microbiol. 57: 2351-2359.

Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., & Field, K.G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60-65.

Gluckert, J.B., Nold, S.C., Boston, H.L., & White, D.C. 1992. Periphyton response in an inductrial receiving stream: lipid-based physiological stress analysis and pattern recognition of microbial community structure. Appl Environ. Microbiol. 49:2579-2587.

Hoefs, M.J.L. et al., 1997. Ether lipids of plantonic Archaea in the marine water column. Appl. Environ. Microbiol. 63:3090-3095.

Kane, M.D., Poulsen, L.K. & Stahl, D.A. 1993. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol. 59:682-686.

Lee, S.H., Malone, C. & Kemp, P.F. 1993. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar. Ecol. Prog. Ser. 101:193-201.

Miamisawa, K. et al., 1977. Preferenctial nodulation of Glycine max, Glycine soja and Macroptilium atropureum by two Bradyrhizobium species japonicum and elkanii. FEMS Microbial. Ecol.24:49-56.

 

Noble, P.A., K.D. Bidle, & M. Fletcher. 1997. Natural microbial community compositions compared by a back-propagating neural network and cluster analysis of 5s rRNA. Appl. Environ. Microbiol. 63:1762-1770.

Painting, S.J., Lucas, M.I., & Muir, D.G. 1989. Fluctuations in heterotrophic bacterial community structure, activity, and produciton in response to development and decay of phytoplankton in a microcosm. Mar. Ecol. Prog. Ser. 53:129-141.

Pinhassi, J. U.L. Zweifel, & A. Hagstrom. 1977. Dominant marine bacterioplankton species found among colony-forming bacteria. Appl. Environ. Microbiol. 63:3359-3366.

Rajendran, N., Matsuda, O., Imamura, N., & Urushigawa, Y. 1992. Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Appl. Environ. Microbiol. 58:562-571.

Ringelberg, D.B., Davis, J.D., Smith, G.A., Pfiffner, S.M., Nichols, J.B., Hensen, J.M., Wilson, J.D., Yates, M., Kampbell, D.H., Reed, H.W., Stocksdale, T.T., & White, D.C. 1988. Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiol. Ecol. 62:39-50.

Simidu, U. & Tsukamoto, K. 1985. Habitat segregation and biochemical activities of marine members of the family Vibrionaceae. Appl. Environ. Microbiol. 50:781-790.

Torsvik, V., GoksØyr, J., Daae, F.L. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782-787.

Voordouw, G., Voordouw, J.K., Karkhoff-schweizer, R.R., Fedorak, P.M., & Westlake, D.W.S. 1991. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl. Environ. Microbiol. 57:3070-3078.

White, D.C. Is there anything else you need to understand about the microbiota that cannot be derived from analysis of nucleic acids. Microb. Ecol. 28:163-166.

 

DOM

Benner, R.J., Pakulski, J.D., McCarthy, M., Hedges, J.I., & Hatcher, P.G. 1992. Bulk chemical characteristics of dissolved organic matter in th ocean. Science 255:1561-1564.

Biddanda, B.A. 1985. Microbial synthesis of macroparticulate matter. Mar. Ecol. Prog. Ser. 20:241-251.

Brophy, J.E. & Carlson, D.J. 1989. Production of biologically refractory dissolved organic carbon by natural seawater microbial communities. DeepSea Res. 36:497-507.

Carlson, D.J., Mayer, L.M., Brann, M.L., & Mague, T.H. 1985. Binding of monomeric organic compounds to macromolecular dissolved organic matter in seawater. Mar. Chem. 16:141-153.

Harris, R.H. & Mitchell, R. 1973. The role of polymers in microbial aggregation.

Hedges, J.I, Cowie, G.L., Richey, J.E., Quay, P.D., Benner, R., Strom, M., & Forsberg, B. 1994. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol. Oceangr. 39:743-761.

Hedges, J.I. 1988. Polymerization of humic substances in natural environments. pp 45-58 In: F.H. Frimmel & R.F. Christman, eds., Humic Substances and Their Role in the Environment. John Wiley & Sons, Ltd.

Heissenberger, A. & Herndl, G.J. 1994. Formation of high molecular weight material be free-living marine bacteria. Mar. Ecol. Prog. Ser. 111:129-135.

Isao, K., Hara, S., Terauchi, K, & Kogure, K. 1990. Role of sub-micometere particles in the ocean. Nautre 345:242-244. (also pp 203-204)

Moran, M.A. & Hodson, R.E. 1994. Dissolved humic substances of vascular plant origin in a coastal marine environment. Limnol. Oceanogr. 39:762-771.

Moran, M.A. & Hodson, R.E. 1994. Support of bacterioplankton production by dissolved humic substances from three marine environments. Mar. Ecol. Prog. Ser. 110:241-247.

Münster, U., Einiö, P., Nurminen, & Overbeck, J. 1992. Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. Hydrobiologia 229:225-238.

Pakulski, J.D. & Benner, R. 1994. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr. 39:930-940.

Sieburth, J.McN., Willis, P-J., Johnson, K.M., Burney, C.M., LaVoie, D.M., Hinga, K.R., Caron, D.A., French, F.W.III., Johnson, P.W., & Davis, P.G. 1976. Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic. Science 194:1415-1418.

Smith, D.C., Simon, M., Alldredge, A.L., & Azam, F. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139-142.

Tranvik, L.J. 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229:107-114.

Tranvik, L.J. 1993. Microbial Transformations of labile dissolved organic matter into humic-like matter in seawater. FEMS Microbiol. Ecol.

Wolter, K. 1982. Bacterial incorporation of organic substances released by natural phytoplankton populations. Mar. Ecol. Prog. Ser. 7:287-295.

 

Bacterial Growth in the Environment

Aas, P., M.M. Lyons, R. Pledger, D.L. Mitchell, & Jeffrey, W.H. 1996. Inhibition of bacterial activites by solar radiation in nearshore waters and the Gulf of Mexico. Aquat. Microb. Ecol. 11:229-238.

Anderson, J.I.W. & Heffernan, W.P. 1965. Isolation and characterization of filterable marine bacteria. J. Bacteriol. 90:1713-1718.

Armstead, I.P. & Ling, J.R. 1993. Variations in the uptake and metabolism of peptides and amino acids by mixed ruminal bacterial in vitro. Appl. Environ. Microbiol. 59:3360-3366.

Bano, N., M.A. Moran, R.E. Hodson. 1997. Bacterial utilization of dissolved humic substances from a freshwater swamp. Aquat. Microb. Ecol. 12:233-238.

Berounsky, V.M. & Nixon, S.W. 1990. Temperature and the annual cycle of nitrification in waters of Naragansett Bay. Limnol. Oceanogr. 35:1610-1617.

Bjornsen, P.K. 1986. Bacterioplankton growth yield in continuous seawater cultures. Mar. Ecol. Prog. Ser. 30:191-196.

Brock, T.D. 1971. Microbial growth rates in nature. Bacteriol. Rev. 35:39-58.

Button, D.K. 1994. The physical base of marine bacterial ecology. Microb. Ecol. 28:273-285.

Button, D.K., Schut, F., Quang, P., Martin, R., Robertson, B.R. 1993. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59:881-891.

Carlucci, A.F., Craven, D.B., & Henrichs, S.M. 1984. Diel production and microheterotrophic utilizaation of dissolved free amino acids in waters off Sothern California. Appl. Environ. Microbiol. 48:165-170.

Coffin, R.B. 1989. Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr. 34:531-542.

Coffin, R.B., Conolly, J.P., & Harris, P.S. 1993. Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization. Mar. Ecol. Prog. Ser. 101: 9-22.

Daubaras, D. & Chakrabarty, A.M. 1992. The environment, microbes and bioremediation: microbial activities modulated by the environment. Biodegradation 3:125-135.

Ducklow, H.W. & Hill, S.M. 1985. The growth of heterotrophic bacteria in the surface waters of warm core rings. Limnol. Oceanogr. 30:239-259.

Gasol, J.M., P.A. delGiorgio, R. Massana, C.M. Duarte.1995. Active versus incative bacteria: size-dependence in a coastal marine plankton community. Mar. Eccol. Prog. Ser. 128:91-97.

 

Goldman, J.C., Caron, D.A., & Dennett, M.R. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr. 32:1239-1252.

Griffith, P.C., Douglas, D.J., & Wainright, S.C. 1990. Metabolic activity of size-fractionated microbial plankton in estuarine, nearshore and continental shelf waters. Mar. Ecol. Prog. Ser. 59:263-270.

Hu, S. & A.H.C. van Bruggen. 1997. Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil. Microb. Ecol. 33:134-143.

Janssen, B.H. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials. Plant & Soil 181:39-45

JØrgensen, N.O.G., Kroer, N., Coffin, R.B., Yang, X.-H., & Lee, C. 1993. Dissolved free amino acids, combined amino acids, and DNA as sources of carbon and nitrogen to marine bacteria. Mar. Ecol. Prog. Ser. 98:135-148.

Joux, F. & P. LeBaron. 1977. Ecological implications of an improved direct viable count method for aquatic bacteria. Appl. Environ. Microbiol. 63:3643-3647.

Kirchman, D.L. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28:255-271.

Li, W.K.W. & Dickie, P.M. 1985. Growth of bacteria in seawater filtered through 0.2 m Nucleopore membranes: implications for dilution experiments. Mar. Ecol. Prog. Ser. 26:245-252.

Linton, J.D. & Stephenson, R.J. 1978. A preliminary study on the growth yields in relation to the carbon and energy content of various organic growth substrates. FEMS Microb. Lett. 3:95-98.

Paul, J.H., DeFlaun, M.F., & Jeffrey, W.H. 1988. Mechanisms of DNA utilization by estuarine microbial populations. Appl. Environ. Microbiol. 54:1682-1688.

Pomeroy, L.R. & Deibel, D. 1986. Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 233:359-361.

Pomeroy, L.R., J.E. Sheldon, W.M. Sheldon, Jr., & F. Peters. 1995. Limits to growth and respiration of bacterioplankton in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 117:259-268.

Pomeroy, L.R., Wiebe, W.J., Deibel, D., Thompson, R.J., Rowe, G.T., & Pakulski, J.D. 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser. 75:143-159.

Schmidt, S.K. & Alexander, M. 1985. Effects of dissolved organic carbon and second substrates on the biodegradation of organic compounds at low concentrations. Appl. Environ. Microbiol. 49:822-827.

Schmidt, S.K. & Gier, M.J. 1990. Coexisting bacterial populations responsible for multiphasic mineralisation kinetics in soil. Appl. Environ. Microbiol. 56:2692-2697.

Schmidt, S.K., Simkins, S. & Alexander, M. 1985. Models for the kinetics of biodegradation of organic compounds not supporting growth. Appl. Environ. Micrbiol. 50:323-331.

Schut, F., DeVries, E.J., Gottschal, J.C., Robertson, B.R., Harder, W., Prins, R.A., & Button, D.K. 1993. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59:2150-2160.

Sinsabaugh, R.L., Findlay, S., Franchini, P., & D. Fischer. 1997. Enzymatic analysis of riverine bacterioplankton production. Limnol. Oceanogr. 42:29-38.

Suttle, C.A., Chan, A.M., & Fuhrman, J.D. 1991. Dissolved free amino acids in the Sargasso Sea: uptake and respiration rates, turnover times, and concentrations. Mar. Ecol. Prog. Ser. 70:189-199.

Tranvik, L.J. 1990. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl. Environ. Microbiol. 56:1672-1677.

Wiebe, W.J., Sheldon, W.M.Jr., & Pomeroy, L.R. 1992. Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl. Environ. Microbiol. 58:359-364.

Wiebe, W.J., Sheldon, W.M.Jr., & Pomeroy, L.R. 1993. Evidence for an enhanced substrate requirement by marine mesophilic bacterial isolates at minimal growth temperatures. Microb. Ecol. 25:151-159.

 

Measurement of Bacterial Growth and Activity

Baath, E. 1994. Thymidine and leucine incorporation in soil bacteria with differnet cell size. Microb. Ecol. 27:267-278.

Blenkinsopp, S.A. & M.A. Lock. 1990. The measurement of electron transport system activity in river biofilms. Wat. Res. 24:441-445.

Bossard, P. & Karl, D.M. 1986. The direct measurement of ATP and adenine nucleotide pool turnover in microorganisms: a new method for environmental assessment of metabolism, energy flux, and phosphorus dynamics. J. Plank. Res. 8:1-13.

Chin-Leo, G. & Kirchman, D.L. 1988. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl. Environ. Microbiol. 54:1934-1939.

Christian, R.R., et al., 1982. Comparison of methods for measurement of bacterial growth rates in mixed batch cultures. Appl. Environ. Microbiol. 43:1160-1165.

Davis, C.L. 1989. Uptake and incorporation of thymidine by bacterial isolates from an upwelling environment. Appl. Environ. Microbiol. 55:1267-1272.

Diaz-Ravina, M., A. Frostegard, & E. Baath. 1994. Thymidine, leucine, and acetate incorporation into soil bacterial assemblages at different temperatures. FEMS Microb. Ecol. 14:221-232.

Ducklow, H.W., & Hill, S.M. 1985. Tritiated thymidine incorporation and growth of heterotrophic bacteria in warm core rings. Limnol. Oceaogr. 30:260-272.

Ferguson, R.L., Buckley, E.N., & Palumbo, A.V. 1984. Response of marine bacterioplankton to differential filtration and confinement. Appl. Environ. Microbiol. 47:49-55.

Fuhrman, J.A. & Azam, F. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66:109-120.

Furhman, J.A., Ducklow, H.W., Kirchman, D.L., Hudak, J., McManus, G.B., & Kramer, J. 1986. Does adenine incorporation into nucleic acids measure total microbial production? Limnol. Oceanogr. 31:627-636.

Jeffery, W.H. & Paul, J.H. 1990. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates. Appl. Environ. Microbiol. 56:1367-1372.

Johnstone, B.H. & Jones, R.D. 1989. A study on the lack of [methyl-3H] thymidine uptake and incorporation by chemolithotrophic bacteria. Microb. Ecol. 18:73-77.

Kirchman, D., Ducklow, H., & Mitchell, R. 1982. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44:1296-1307.

Maeda, M., Lee, W.J., & Taga, N. 1983. Distribution of lipopolysaccharide, an indicator of bacterial biomass, in subtropical areas of the sea. Mar. Biol. 76:257-262.

Novitsky, J.A. Microbial growth rates and biomass produciton in a marine sediment: evidence for a very active but mostly nongrowing community. Appl. Environ. Microbiol. 53:2368-2372.

Pedrós-Alió, C. & Newell, S.Y. 1989. Microautoradiographic study of thymidine uptake in brackish waters around Sapelo Island, Georgia, USA. Mar. Ecol. Prog. Ser. 55:83-94.

Robarts, R.D. & Zohary, T. 1993. Fact or fiction-bacterial growth rates and production as determined by [methyl-3H]-thymidine? Adv. Microb. Ecol. 13:371-425.

Roszak, D.B. & Colwell, R.R. 1987. Metabolic activity of bacterial cells enumerated by direct viable count. Appl. Environ. Microbiol. 53:2889-2983.

Smith, D.C. & F. Azam. 1993. A simple economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6:107-114.

Snyder, R.A., Robarts, R.D., & Caldwell, D.E. 1994. [methyl-3H]thymidine and [3H]leucine in Vibrio spp. grown in nutrient-limited continuous cultures. Can. J. Microbiol. 40:375-381.

van Looij, A. & Riemann, B. 1993. Measurements of bacterial production in coastal marine environments using leucine: application of kinetic approach to correct for isotope dilution. Mar. Ecol. Prog. Ser. 102:97-104.

Winn, C.D. & Karl, D.M. 1986. Diel nucleic acid synthesis and particulate DNA concentrations: conflicts with division rate estimates by DNA accumulation. Limnol. Oceanogr. 31:637-64

Kemp, P.F. & LaRoche, J. 1993. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl. Environ. Microbiol. 59:2594-2601.

DeLong, E.F., Wickham, G.S., & Pace, N.R. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360-1363.

Falkowski, P.G. & LaRoche, J. 1991. Molecular biology in studies of ocean processes. Int. Rev. Cytol. 128:261-303.

Paul, J.H. & Myers, B. 1982. Fluorometric determination of DNA in aquatic microorganisms by use of Hoechst 33258. Aool. Environ. Microbiol. 43:1393-1399.

 

Biofilms and Aggregates

Bartlett, D.H., Wright, M.E., & Silverman, M. 1988. Variable expression of extracellular polysaccharide in the marine bacterium Pseudomonas atlantica is controlled by genome rearrangement. Proc. Nat. Acad. Sci. 85:3923-3927.

Biddanda, B.A. 1985. Microbial synthesis of macroparticulate matter. Mar. Ecol. Prog. Ser. 20:241-251.

Bright, J.J & Fletcher, M. 1983. Amino acid assimilation and respiration by attached and free living populations of a marine Pseudomonas sp. Microb. Ecol. 9:215-226.

Brown, C.M., Ellwood, D.C., & J.R. Hunter. 1977. Growth of bacteria at surfaces: influence of nutrient limitation. FEMS Microbiology Letters 1:163-166.

Caldwell, D.E. & J.R. Lawrence. 1986. Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynammic boundry layers of surface microenvironments. Microb. Ecol. 12:299-312.

Corpe, W.A. and Jensen, J.E. 1992. An electron microscopic study of picoplanktonic organisms from a small lake. Microb. Ecol. 24:181-198.

Costerton, J.W. K.-J. Cheng, G.G. Geesey, T.I. Ladd, & J. Nichel. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41:435-464.

Cowen, J.P. 1992. Morphological study of marine bacterial capsules: implications for marine aggregates. Mar. Biol. 114:85-95.

Deretic, V., Dikshit, R., Konyencsni, W.M., Chakrabarty, A.M., & Misra, T.K. 1989. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J. Bacteriol. 171:1278-1283.

Ferris, F., Schultze, S., Witten, T., Fyfe, W., & Beveridge, T. 1989. Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl. Environ. Microbiol. 55:1249-1257.

Geesey, G.G. & White, D.C. 1990. Determination of bacterial growth and activity at solid-liquid interfaces. Annu. Rev. Microbiol. 44:579-602.

Hepper, C.M. Extracellular polysaccharides of soil bacteria. Chapt 5 in ?

Humphrey, B., Kjelleberg, S., & Marshall, K.C. 1983. Responses of marine bacteria under starvation conditions at a solid-water interface. Appl. Environ. Microbiol. 45:43-47.

Jeffrey, W.H. & Paul, J.H. 1986a. Activity of an attached and free living Vibrio sp. as measured by thymidine incorporation, p-iodonitrotetrazolium reduction, and ATP/Dna ratios. Appl. Environ. Microbiol. 51:150-156.

Jeffrey, W.H. & Paul, J.H. 1986b. Activity measurements of planktonic microbial and microfouling communities in a eutrophic estuary. Appl. Environ. Microbiol. 51:157-162.

Kinner, N.E., Balkwill, D.L., & Bishop, P.L. 1983. Light and electron Microscopic studies of microorganisms growing in rotating biological contactor biofilms. Appl. Environ. Microbiol. 45:1659-1669.

Kjelleberg, S., Humphrey, B.A., & Marshall, K.C. 1982. Effect of interfaces on small, starved marine bacteria. Appl. Environ. Microbiol. 43:1166-1172.

Lawrence, J.R. & Caldwell, D.E. 1987. Behavior of bacterial stream populations within the hydropdynamic boundary layers of surface microenvironments. Microb. Ecol. 14:15-27.

MacLeod, F.A., S.R. Guiot, & J.W. Costerton. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56:1598-1607

Marshall, K.C., Stout, R., Mitchell, R. 1971. Mechanisms of the initial events in the sorption of marine bacteria to a surface. J. Gen. Microbiol. 68:337-348.

McLean, R., Beauchemin, D., Clapham, L., Beveridge, T. 1990. Metal binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl. Environ. Microbiol. 56:3671-3677.

Meyer-Reil, L.A. 1994. Microbial life in sedimentary biofilms- the challenge to microbial ecologists. Mar. Ecol. Prog. Ser. 112:303-311.

Mittleman, M.W., D.E. Nivens, C. Low, & D.C. White. 1990. Differential adhesion, activity, and carbohydrate:protein ratios of Pseudomonas atlantica monocultures attaching to stainless steel in a linear shear gradient. Microb. Ecol. 19:269-278.

Murray, R.E., Cooksey, K.E., & Priscu, J.C. 1987. Influence of physical disruption on growth of attached bacteria. Appl. Environ. Microbiol. 53:2997-2999.

Risatti, J.B., W.C. Capman, & D.A. Stahl. 1994. Community structure of a microbial mat: the phylogenetic dimension. Preoc. Natl. Acad. Sci. 91:10173-10177.

Robertson, M.L., A.L. Mills, & Zieman, J.C. 1982. Microbial synthesis of detritus-like particulates from dissolved organic carbon released by tropical seagrasses. 7:279-285.

Robinson, R.W., Akin, D.E., Nordstedt, R.A., Thomas, M.V. & Aldrich, H.C. 1984. Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors. Appl. Environ. Microbiol. 48:127-136.

Sutherland, I.W. Microbial exopolysaccharides-their role in microbial adhesion in aqueous systems. CRC Critical Reviews in Microbiol. 10:173-201.

Wahl, M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58:175-189.

Wolfaardt, G.M., Lawrence, J.R., Headley, J.V., Robarts, R.D., & Caldwell, D.E. 1994. Microbial exopolymers provide a mechanism for bioaccumulation of contamininants. Microb. Ecol. 27:279-291.

Wrangstadh, M., P.L. Conway, & S. Kjelleberg. 1986. The production and release of extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion. Arch. Microbiol. 145:220-227.

Zobell, C.E. & Allen, E.C. 1935. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29:230-251.

Protist Feeding Reactions

Andersson, A., Larsson, U., Hagström, A. 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33:51-57.

Bailey, G.B., D.B. Day, & J.W. Gasque. 1985. Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells. J. Exp. Med. 162:546-558.

Berger, J.D. 1988. The cell cycle and regulation of cell mass and macronuclear DNA content. Chpt 7, pp 95-119 In: Görtz, H.-D., ed. Paramecium. Springer-Verlag, Berlin.

Bolivar, I., Guiard-Maffia, J. 1986. Expression of surface coat glycoconjugates by bacteria-fed Tetrahymena. J. Protozool. 33:335-340.

Caron, D.A., Lim, Ee Lin, Miceli, G., Waterbury, J.B., Valois, F.W. 1991. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar. Ecol. Prog. Ser. 76:205-217.

Chrzanowski, T.H. and Simek, K. 1990. Prey-size selection by freshwater flagellated protozoa. Limnol. Oceanogr. 35:1429-1436.

Coler, R.A. and Gunner, H.B. 1969. Microbial populations as determinants in protozoan succession. Water Res. 3:149-156.

Crawford, D.W. 1992. Metabolic cost of motility in planktonic protists: theoreticalconsiderations on size scaing and swimming speed. Microb. Ecol. 24:1-10.

Crawford, D.W., Rogerson, A., Laybourn-Parry, J. 1994. Respiration of the marine amoeba Trichosphaerium sieboldi determined by 14C labelling and Cartesian diver methods. Mar. Ecol. Prog. Ser. 112:135-142.

Denholm, A.M & J.R. Ling 1989. In vitro metabolism of 2,2’-diaminopimelic acid from Gram-positive and Gram-negative bacterial cells by ruminal protozoa and bacteria. Appl. Environ. Microbiol. 55: 212-218.

Dive, D. 1973. La nutrition holozoique des protozoaires cilies. Ses consequences dans l'epuration naturelle et artificielle. L'Annee Biologique XII:343-380.

Dolan, J.R. & K.Simek. 1997. Processing of ingested matter in Strombidium sulcatum, a mrine ciliate (Oligotrichida). Limnol. Oceanogr. 42:393-397.

Drozanski, W. 1978. Activity and distribution of bacteriolytic N-acetyl-muramidase during growth of Acanthamoeba castellanii in axenic culture. Acta Microbiol. Pol. 27:243-256.

Eccleston-Parry, J.D. & B.S.C. Leadbeater. 1994. A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. Mar. Ecol. Prog. Ser. 105: 167-177.

Fenchel, T. 1986. Protozoan filter feeding. Prog. Protistol. 1:65:114.

Fenchel, T. & B.J. Finlay. 1983. Respiration rates in heterotrophic, free-living protozoa. Microb. Ecol. 9:99-122.

Fok, A.K. & Allen, R.D. 1988. The lysosome system. Chpt. 19, pp 301-324 In: Görtz, H.-D., ed. Paramecium. Springer-Verlag, Berlin.

Gilboa-Gardinaer, N & Sharabi, Y. 1980. Increase in growth rate and phaocytic acitivty of Tetrahymena induced by Pseudomonas lectins. J. Protozool. 27:209-211.

Gonzalez, J.M., Sherr, E.B., and Sherr, B.F. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56:583-589.

Groscop, J.A. & M.M. Brent. 1964. The effects of selected strains of pigmented microorganisms on small free-living amoebae. Can J. Microbiol. 10:579-584.

Hansen, F.C. H.J. Witte, & J. Passarge. 1996. Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliania huxleyi cells. Aquat. Microb. Ecol. 10:307-313.

Jonsson, P.R. 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous cilaites (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 33: 265-277.

Jürgens, K., Wickham, S.A., Rothhaupt, K.O., & Santer, B. 1996. Feediing rates of macro- and microzooplankton on heterotrophic nanoflagellates. Limnol. Oceanogr. 41:1833-1839.

Kim, Y-O & A. Taniguchi. 1995. Excystment of the oligotrich ciliate Strombidium conicum. Aquat. Microb. Ecol. 9:149-156.

Klopocka, W., J. Kolodziejczyk, A. Lopatowska, & A. Grebecki. 1996. Relationship between pinocytosis and adhesion in Amoeba proteus. Cell Biol. International 20: 635-641.

Montagnes, D.J.S. 1996. Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130:241-254.

Nakamura, Y., S.-y. Suzuki, & J. Hiromi. 1995. Growth and grazing of a naked heterotorphic dinoflagellate, Gyrodinium dominans. Aquat. Microb. Ecol. 9:157-164.

Ohman, M.D. & R.A. Snyder. 1991. Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36:922-935.

Parker, J.G. 1976. Cultureal characteristics of the marine ciliated protozoan, Uronema marinum Dujardin. J. exp. mar. Biol. Ecol. 24: 213-226.

Philpott, C.H. 1928. Growth of Paramecium in pure cultutres of pathogenic bacteria and in the presence of soluble products of such bacteria. J. Morph. Physiol. 46: 85-129.

Quiñones-Maldonaldo, V. & F.L. Renaud. 1987. Effect of biogenic amines on phagocytosis in Tetrahymena thermophila. J. Protozool. 34:435-438.

Ricketts, T.R. & A.F. Rappitt. 1976. Endocytosis, digestive vacular movement and exocytosis on refeeding starved Tetrahymena pyriformis GL-9. Protoplasma 87:221-236.

Stoecker, D.K., A. Li, D.W. Coats, D.E. Gustafson, M.K. Nannen. 1997. Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 152:1-12.

Turley, C.M., Newell, R.C., Robins, D.B. 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33: 59-70.

Valdivia, R.H. & Falkow, S. 1997. Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007-2011.

Wang, X. & D.G. Ahearn. 1997. Effect of bacteria on the survival and growth of Acanthamoeba castellanii. Curr. Microbiol. 34: 121-215.

Weekers, P.H.H., A.M.W. Engelberts, & G.D. Vogels. 1995. Bacteriolytic activities of the free-living amoebae, Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis. Antonie van Leeuwenhoek 68:237-243.

 

Protist Distribution and Diversity

Arndt, H. 1993. A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (heliozoa) in lake plankton. Mar. Microb. Food Webs 7:3-29.

Bamforth, S.S. 1980. Terrestrial protozoa. J. Protozool. 27:33-36.

Beers, J.R., Reid, F.M.H., and Stewart, G.L. 1975. Microplankton of the North Pacific Central gyre. Population structure and abundance, June 1973. Int. Revue. ges. Hydrobiol. 60:607-638.

Carlough, L.A. & Meyer, J.L. 1989. Protozoans in two southeastern blackwater rivers and their importance to trophic transfer. Limnol. Oceanogr. 163-177.

Coler, R.A. & Gunner, H.B. 1969. Microbial populations as determinants in protozoan succession. Water Res. 3:149-156.

Elliot, P.B. & Bamforth, S.S. 19xx. Interstitial protozoa and algae of Louisiana salt marshes. J. Protozool. 22:514-519,

Fauré-Fremiet, E. 1967. Chemical aspects of ecology. Chapt 2, pp 21-54 in: Kidder, G.W., ed., Protozoa, Volume I of: Florkin, M & Scheer, B.T. eds, Chemical Zoology, Academic Press, New York.

Fenchel, T. 1967. The ecology of Marine Microbenthos I. The quantitative importance of ciliates as compared with metazoans in various types of sediments. Ophelia 4:121-137.

Fenchel, T. 1969. The ecology of Marine Microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1-182 (sections 6 & 10 only).

Fenchel, T. 1982. Ecology of heterotrophic microflagellates I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8:211-223.

Fenchel, T. 1996. Worm burrows and oxic microniches in marine sediments. 2. Distribution patterns of ciliate protozoa. Mar. Biol. 127:297-301.

Fenchel, T. & Finlay, B.J. 1991. The biology of free-living anaerobic ciliates. Eur. J. Protistol. 26:201-215.

Fenchel, T. & R.J. Riedel. 1970. The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7:255-268.

Foissner, W. 1987. Soil Protozoa: fundamental problems. ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Prog. Protistol. 2:69-212.

Finlay, B.J., J.O. Corliss, G. Esteban, & T. Fenchel. 1996. Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Quat. Rev. Biol. 71:221

Gates, M.A. 1984. Quantitative importance of ciliates in the planktonic biomass of lake ecosystems. Hydrobiologia 108:233-238.

Gracia, M.del P., Castellon, C., Igual, J., and Sunyer, R. 1989. Ciliates protozoan communities in a fluvial ecosystem. Hydrobiologia 183:11-31.

Martin-Cereceda, M. S.Serrano, & A. Guinea. 1996. A comparative study of ciliated protozoa communities in activated-sludge plants. FEMS Microbiol. Ecol. 21:267-276.

Noland, L.E. 1925. Factors influencing the distribution of fresh water ciliates. Ecology 6:437-452.

O’Kelly. 1993. The Jakobid flagellates: structural features of Jakoba, Reclinomonas and Histonia and implications for the early diversification of eukaryotes. J. Euk. Microbiol. 40:627-636.

Picken, L.E.R. 1937. The structure of some protozoan communities. Jour. Ecol. 25:368-384.

Rodríguez-Zaragoza, S 1994. Ecology of free-living amoebae. Crti. Rev. Microbiol. 20:225-241.

Sieburth, J.McN. 1979. Sea Microbes. Oxford University Press. Part VII. Phagotrophic Eukaryotes

Chapter 22 Flagellates pp 363-389

Chapter 23. Amoeboid Forms pp390-432

Chapter 24. Ciliates pp433-474

Sinclair, J.L. & Ghiorse, W.C. 1987. Distribution of protozoa in subsurface sediments of a pristine groundwater study site in Oklahoma. Appl. Environ. Microbiol. 53:1157-1163.

Stout, J.D. 1956. Reaction of ciliates to environmental factors. Ecology 37:178-191.

Tendal, O.S. & Gooday, A.J. 1981. Xenophyophoria (Rhizopoda, Protozoa) in bottom photographs from the bathyal and abyssal NE Atlantic. Oceanol. Acta 4:415-422.

Wagener, S., S. Schulz, K. Hanselmann. 1990. Abundance and distribution of anaerobic protozoa and their contribution to methane production in Lake Cadagno (Switzerland. FEMS Microbiol. Ecol. 74:39-48.

Warwick, R.M. & Clarke, K.R. 1995. New ‘Biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar. Ecol. Prog. Ser. 129:301-305.

 

Mineralization and Nutrient Regeneration by Phagotrophic Protists

Andersson, A., C. Lee, et al. 1985. Release of aminoacids and inorganic nutrients by heterotrophic marine microflagellates. Mar. Ecol. Prog. Ser. 23:99-106.

Andersen, O. K., J. C. Goldman, et al. 1986. Nutrient cycling in a microflagellate food chain: III. Phosphorous dynamics. Mar. Ecol. Prog. Ser. 31:47-55.

Anderson, R. V., E. T. Elliot, et al. 1978. Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic Interactions of bacteria, amoebae, and netmatodes. Microbial Ecology 4:361-371.

Barsdate, R. J., R. T. Prentki, et al. 1974. Phosphorous cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25:239-251.

Bloem, J., M. Starink, et al. 1988. Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures. Appl. Envir. Microbiol. 54:3113-3121.

Bouwman, L.A., J. Bloem, P.H.J.F. vander Boogert, F.Bremer, G.H.J. Honderboom, & P.C. de Ruiter. 1994. Short-term and long-term effects of bacterivorous nematodes and nematophagous fungi on carbon and nitrogen mineralization in microcosms. Biol. Fertil. Soils 17:249-256.

Butterfield, C. T. and W. C. Purdy. 1931. Some Interrelationships of Plankton and Bacteria in Natural Purification of Polluted Water. Industrial and Engineering Chemistry 23:213-218.

Caron, D. A., J. C. Goldman, et al. 1985. Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog. Ser. 24:243-254.

Clarholm, M. 1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17:181-187.

Cole, C. V., E. T. Elliott, et al. 1978. Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorous transformations. Microbial Ecology 4:381-387.

Coleman, D. C., R. V. Anderson, et al. 1978. Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Microbial Ecology 4:373-380.

Curds, C. R. 1982. The ecology and role of protozoa in aerobic sewage treatment processes. Ann. Rev. Microbiol. 36:27-46.

Chrznaowski, T.H. & M. Kyle. 1996. Ratios of carbon, nitrogen, and phospohorous in Pseudomonas fluorescencens as a model for bacterial elemental ratios and nutrient regeneration. Aquat. Microb. Ecol. 10:115-122.

Gast, V. and V. Horstman. 1983. N remineralization of phyto- and bacterioplankton by the marine ciliate Euplotes vannus. Mar. Ecol. Prog. Ser. 13:55-60.

Goldman, J. C., D. A. Caron, et al. 1985. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24:231-.

Griffiths, B. S. 1989. Enhanced Nitrification in the Presence of Bacteriophagous Protozoa. Soil Biol. Biochem. 8:1045-1051.

Gupta, V. V. S. R. and J. J. Germida. 1989. Influence of bacterial-amoebal interactions on sulfur transformations in soil. Soil Biol. Biochem. 21:921-930.

Havskum, H. & Hansen, A.S. 1997. Importance of pigmented and colorless nano-sized protists as grazers on nanoplankton in a phosphate-depleted Norwegian fjord and in enclosures. Aquat. Microb. Ecol. 12:139-151.

Javornicky, P. and V. Prokesova. 1963. The influence of protozoa and bacteria upon the oxidation of organic substances in water. Int. Revue ges. Hydrobiol. 48:335-350.

Johannes, R. E. 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10:434.

 

Karner, M., C. Ferrier-Pagés, et al. 1994. Phagotrophic nanoflagellates contribute to occurrence of a-glucosidase and aminopeptidase in marine environments. Mar. Ecol. Prog. Ser. 114::237-244.

Madsen, E. L., J. L. Sinclair, et al. 1991. In situ biodegradation: microbiological patterns in a contaminated aquifer. Science 252:830-833.

Nagata, T. and D. L. Kirchman. 1991. Release of dissolved free and combined aminoacids by bacterivorous marine flagellates. Limnol. Oceanogr. 36:433-443.

Nagata, T. and D. L. Kirchman. 1992. Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar. Ecol. Prog. Ser. 83:233-240.

Neilsen, T. G. and K. Richardson. 1989. Food Chain Structure of the North Sea Plankton Communities: Seasonal Variations of the Role of the Microbial Loop. marine Ecology Progress Series 56:75-87.

Pengerud, B., E. F. Skjoldal, et al. 1987. The reciprocal interaction between degradation of glucose and ecosystem structure. Studies in mixed chemostat cultures of marine bacteria, algae, and bacterivorous nanoflagellates. Mar. Ecol. Prog. Ser. 35:111-117.

Rothhaupt, K. O. 1992. Stimulation of Phosphorus-Limited Phytoplankton by Bacterivorous Flagellates in Laboratory Experiments. Limnol. Oceanogr. 37:750-759.

Rutherford, P.M. & Juma, N.G. 1992. Simulation of protozoa-induced mineralization of bacterial carbon and nitrogen. Can. J. Soil Sci. 72:201-216.

Sambanis, A., S. Pavlou, et al. 1987. Coexistence of Bacteria and Feeding Ciliates: Growth of Bacteria on Autochthonous Substrates as a Stabilizing Factor for Coexistence. Biotechnology and Bioengineering XXIX (29):714-728.

Schmidt, S. K., R. Smith, et al. 1992. Interactions of Bacteria and Microflagellates in Sequencing Batch Reactors Exhibiting Enhanced Mineralization of Toxic Organic Chemicals. Microb Ecol 23:127-142.

Seto, M. and T. Tazaki. 1971. Carbon dynamics in the food chain system of glucose-Escherichia coli-Tetrahymena vorax. Jpn. J. Ecol. 21:179-188.

Sherr, B. F., E. B. Sherr, et al. 1982. Decomposition of organic detritus: a selective role for microflagellate protozoa. Limnol. Oceanogr. 27:765-769.

Sherr, B. F., E. B. Sherr, et al. 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed four species of bacteria. Appl. Environ. Microbiol. 45:1196-1201.

Snyder, R.A. & Hoch, M.P. 1996. Consequences of protist-stimulated bacterial production for estimating protist growth efficiencies. Hydrobiologia 341:113-123.

Taylor, G. T., R. Iturriga, et al. 1985. Interactions of bacterivorous grazers and heterotrophic bacteria with dissolved organic matter. Mar. Ecol. Prog. Ser. 23:129-141.

Taylor, W. D. 1986. The effect of grazing by a ciliated protozoan on phosphorous limitation of heterotrophic bacteria in batch culture. J. Protozool. 33:47-52.

Thingstad,m T.F., E.F. Skjoldal, & R.A. Bohne. 1993. Phosphorous cycling and algal-bacterial competition in Sandsfjord, western Norway. Mar. Ecol. Prog. Ser. 99:239-259.

 

Phagotrophic Protist Feeding

Bretter, I., M. I. Ramos-Gonzalez, et al. 1994. Fate of Psudomonas putida After Release into Lake Water Mesocosms: Different Survival Mechanisms in Response to Environmental Conditions. Microbial Ecology 27:99-122.

Caron, D. A., E. L. Lim, et al. 1991. Grazing and Utilization of Chroococcoid Cyanobacteria and Heterotrophic Bacteria by Protozoa in Laboratory Cultures and a Coastal Plankton Community. Mar. Ecol. Prog. Ser. 76:205-217.

Dive, D. 1973. La nutrition holozoïque des protozoaires ciliés. Ses conséquences dans l’épuration naturelle et artificielle. L’Année Biologique XII:343-380.

Dolan, J. R. 1991. Guilds of Ciliate Microzooplankton in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 33:137-152.

Fenchel, T. 1980. Suspension feeding in ciliate protozoa: feeding rates and their ecological significance. Microb. Ecol. 6:13-25.

Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria. Mar. Ecol. Prog. Ser. 9:35-42.

Gonzalez, J. M., E. B. Sherr, et al. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56:583-589.

Gonzalez, J. M., E. B. Sherr, et al. 1993. Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial prey. Marine Ecology Progress Series 102:257-267.

Gude, H. 1979. Grazing by Protozoa as Selection Factor for Activated Sludge Bacteria. Microb. Ecol. 5:225-237.

Gurijala and M. Alexander. 1990. Effect of growth rate and hydrophobicity on bacteria surviving protozoan grazing. Appl. Environ. Microbiol. 56:1631-1635.

Heinbokel, J. F. and J. R. Beers. 1979. Studies on the Functional Role of Tintinnids int he Southern California Bight. III. Grazing Impact of Natural Assemblages. Marine Biology 52:23-32.

Jonsson, P. R. 1986. Particle Size Selection, Feeding Rates and Growth Dynamics of Marine Planktonic Oligotrichous ciliates (Ciliophora: Oligotrichina). Marine Ecology Progress Series 33:265-277.

Jurgens, K. and H. Gude. 1994. The potential importance of grazing-resistant bacteria in planktonic systems. Marine Ecology Progress Series 112:169-188.

Mitchell, G. C., J. H. Barker, et al. 1988. Feeding of a Freshwater Flagellate, Bodo saltans, on Diverse Bacteria. J. Protozool. 35:219-222.

Ohman, M. D. and R. A. Snyder. 1991. Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36:922-935.

Rassoulzadegan, F., M. Laval-Pueto, et al. 1988. Partitioning of the food ration of marine ciliates between pic- and nanoplankton. . Hydrobiologia 159:75-88.

Sibbald, M. J. and L. J. Albright. 1988. Aggregated and Free Bacteria as Food Sources for Heterotrophic Microflagellates. Appl. Environ. Microbiol. 54:613-616.

Singh, B. N. 1945. The selection of bacterial food by amoebae, and the toxic effects of bacterial pigments and other products on soil protozoa. Br. J. exp. Path. 26:316-325.

Sommaruga, R. & R. Psenner. 1995. Permanant presence of grazing-resistant bacteria in a hypertrophic lake. Appl. Environ. Microbiol. 61:3457-3459.

 

Stoecker, D. K., A. Taniguchi, et al. 1989. Abundance of Autotrophic, Mixotrophic and Heterotrophic Planktonic Ciliates in Shelf and Slope Waters. Marine Ecology Progress Series 50:241-254.

Taylor, W. D. and J. Berger. 1975. Growth responses of cohabiting ciliate protozoa to various prey bacteria. Can. J. Zool. 54:1111-1114.

Tranvik, L. J., E. B. Sherr, et al. 1993. Uptake and Utilization of ‘Colloidal DOM’ by Heterotrophic Flagellates in Seawater. Mar. Ecol. Prog. Ser. 92:301-309.

Turley, C. M., R. C. Newell, et al. 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser. 33:59-70.

Wikner, J., F. Rassoulzadegan, et al. 1990. Periodic bacterivore activity balances bacterial growth in the marine environment. Limnol. Oceanogr. 35:313-324.

 

Predation on Protists

Archbold, John H.G. and Jacques Berger. 1985. A Qualitative Assessment of Some Metazoan Predators of Halteria grandinella, a Common Freshwater Ciliate. Hydrobiologia 126: 97-102.

Burns, C. W. and J.J. Gilbert. 1993. Predation on ciliates by freshwater calanoid copepods: rates of predation and relative vulnerabilities of prey. Freshwater Biology 30: 377-393.

DeBiase, A.E., R.W. Sanders, and K.G. Porter. 1990. Relative Nutritional Value of Ciliate Protozoa and Algae as Food For Daphnia. Microb. Ecol. 19: 199-210.

Fessenden, L. and T. J. Cowles. 1994. Copepod predation on phagotrophic ciliates in Oregon coastal waters. Marine Ecology Progress Series 107: 103-111.

Gifford, D.J. 1991. The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81-86.

Gifford, D.J. and M.J. Dagg. 1988. Feeding of the estuarine copepod Acatia tonsa Dana: carnivory vs. hebivory in natural microplankton assemblages. Bull. Mar. Sci. 43: 458-468.

Gilbert, J.J. 1994. Jumping behavior in the Oligotrich cilaites Strobilidium velox and Halteria grandinella, and its significance as a defense against rotifer predators. Microb. Ecol. 27:189-200.

Hartmann, H. J. , H. Taleb, L. Aleya, and N. Lair. 1993. Predation On Ciliates By the suspension-feeding Calanoid Copepod Acanthodiaptomus denticornis. Can. J. Fish. Aquat. Sci. 50: 1382-1393.

Jonsson, Per R. and Peter Tiselius. 1990. Feeding Behaviour, Prey Detection and Capture Efficiency of the Copepod Acartia tonsa Feeding on Planktonic Ciliates. Marine Ecology Progress Series 60: 35-44.

Jürgens, K., J.M. Gasol, R. Massana, and C. Pedrós-Alió. 1994. Control of heterotorphic bacteria and protozoans by Daphnia pulex in the epilimnion of lake Ciscó. Arch. Hydrobiol. 131: 55-78.

Kiorbøe, T. and T.G. Nielsen. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39: 493-507.

Kleppel, G.S. 1993. On the diet of calanoid copepods. Mar. Ecol. Prog. Ser. 99: 183-195.

Kusch, J. 1993. Predatior-induced morphological changes in Euplotes (Ciliata): isolation of the substance released from Stenostomum sphagnetorum (Turbellaria). J. Exp. Zool. 265:613-618.

Nielsen, T.G. and T. Kiorbøe. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519.

Ohamn, M.D. & J.A. Runge. 1994. Sustanined fecundity when phytoplankton resources are in short supply: omnivory by Calinus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr. 39:21-36.

Ohman, M.D., G.H. Theilacker, & S.E. Kaupp. 1991. Immunochemical detection of predation on ciliate protists by larvae of the Northern Anchovy (Engraulis mordax). Biol. Bull. 181:500-504.

Rieper, Marianna. 1985. Some Lower Food Web Organisms in the Nutrition of Marine Harpacticoid Copepods: An Experimental Study. Helgolander Meeresuntersuchungen 39: 357-366.

Saiz, E., P. Tiselius, P. R. Jonsson, P. Verity, and G.A. Paffenhöfer. 1993. Experimental records of the effects of food patchiness and predation on egg production of Acartia tonsa. Limnol. Oceanogr. 38: 280-289.

Sanders, R.W. and S.A. Wickham. 1993. Planktonic protozoa and metazoa: predation, food quality and popualtion control. Marine Microbial Food Webs 7: 197-223.

Sheldon, R.W. and P. Nival. 1986. An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr. 31: 184-188.

Stoecker, Diane K. and Judith McDowell Capuzzo. 1990. Predation on Protozoa: Its Importance to Zooplankton. Journal of Plankton Research 12 (5): 891-908.

Stoecker, D.K. & Egloff, D.A. 1987. Predation by Acartia tonsa Dana on planktonic cilaites and rotifers. J. exp. mar. Biol. 110: 53-68.

Stoecker, D.K. & Govoni, J.J. 1984. Food selection by young larval gulf menhaden (Brevoortia patronus). Mar. Biol. 80: 299-306.

Washburn, J.O., M.E. Gross, D.R. Mercer, & J.R. Anderson. 1988. Predator-induced trophic shift of a free-living ciliate: parasitism of mosquito larvae by their prey. Science 240:1193-1195

White, J. and M.R. Roman. 1992. Egg production by the calanoid copepod Acartia tonsa in the mesohaline Chesapeake Bay: the importance of food resources and temperature. Mar. Ecol. Prog. Ser. 86: 239-249.

Wiackowski, K., M. T. Brett, and C. R. Goldman. 1994. Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39: 486-492.

Wiadnyana, N.N. and F. Rassoulzadegan. 1989. Selective feeding of Acartia clausi and Centropages typicus on microzooplankton. Mar. Ecol. Prog. Ser. 53: 37-45.

 

Web Structure & Function

Blackburn, N. U.L. Zweifel, & Å. Hagström. 1996. Cycling of marine dissolved organic matter. II. A model analysis. Aquat. Microb. Ecol. 11:79-90.

Blackburn, N., F.Azam, & Å. Hagström. 1997. Spatially explicit simulations of a microbial food web. Limnol Oceanogr. 42:613-622.

Buck, K.R., F.P. Chavez, & L. Campbell. 1996. Basin-wide distirbutions of living carbon components and the inverted trophic pyramid of the central gyre of the North Atlantic Ocean, summer 1993. Aquat. Microb. Ecol. 10:283-298.

Burns, C.W. & M. Schallenberg. 1996. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J. Plank. Res. 18:683-714.

Coale, K.H. et al., 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiemnt in the equatorial Pacific Ocean. Nature 383:495-501.

del Giogio, P.A., J.M. Gasol, D.Vaqué, P. Mura, S. Agustí, & C.M. Duarte. 1996. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41:1169-1179.

Ekelund, F. & R.Rí nn. 1994. Notes on protozoa in agricultural soil with empahsis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol. Rev. 15:321-353.

Garrison, D.L. & Buck, K.R. 1989. The biota of Antarctic pack ice in the Weddell Sea and Antarctic Peninsula regions. Polar Biol. 10:211-219.

Hagström, Å., F. Azam, A. Andersson, J. Wikner, & F. Rassoulzadegan. 1988. Microbial loop in an oligotrophic pelagic marine ecosytem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser. 49:171-178.

Hall, J.A., D.P. Barrett, & M.R. James. 1993. The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton sized prey in a coastal marine environment. J. Plank. Res. 15:1075-1086.

Hansen, B., S. Christiansen, & G. Pedersen. 1996. Plankton dynmaics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chain. Polar Biol. 16:115-128

Johnson, M.D. & A.K. Ward. 1997. Influence of phagotrophic protistan bacterivory in determining the fate of dissolved organic matter (DOM) in a wetland microbial food web. Microb. Ecol. 33:149-162.

Jost, J. L., J. F. Drake, et al. 1973. Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol. 113:834-840.

Jürgens, K., J.M. Gasol, R. Massana & C. Pedrós-Alió. 1994. Control of heterotophic bacteria and protozoans by Daphnia pulex in the epilimnion of Lake Ciscó. Arch. Hydrobiol. 131:55-78.

Jürgens, K. 1994. Impact of Daphnia on planktonic microbial food webs- a review. Mar. Micro. Food Webs 8:295-324.

Kuparinen, J. & P.K. Bjí rnsen. 1992. Bottom-up and top-down controls of the microbial food web in the Southern Ocean: experiments with manipulated microcosms. Polar Biology 12:189-195

Legendre, L. & J.LeFèvre. 1995. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9:69-77.

Lovejoy, C., W.F. Vicent, J.-J. Frenette, & J.J. Dodson. 1993. Microbial gradients in a turbid estuary: application of a new method for protozoan community analysis. Limnol. Oceanogr. 38:1295-1303.

Michaels, A.F. & M.W. Silver. Primary production, sinking rates and the microbial food web. Deep-sea Res. 35:473-490.

Pierce, R.W. & J.T. Turner. 1992. Ecology of plantonic ciliates in marine food webs. Reviews in Aquatic Sciences 6:139-181.

Pernthaler, J., B. Sattler, K. Simek, A. Schwarzenbacher, & R. Psenner. 1996. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat. Microb. Ecol. 10:255-263.

Satta, M.P., S. Agustí, M.P. Mura, D. Vaqué & C.M. Duarte. 1996. Microplankton respiration and net community metabolism in a bay on the NW Mediterranean coast. Aquat. Microb. Ecol. 10:165-172.

Simek, K., P.Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J.Vrba, & R. Psenner. 1997. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12:49-63.

Stoecker, D. K. and G. T. Evans. 1985. Effects of protozoan herbivory and carnivory in a microplankton food web. Mar. Ecol. Prog. Ser. 25:159-167.

Stoecker, D.K., D.E. Gustafson, & P. Verity. 1996. Micro- and mesoprotozooplankton at 140W in the equatorial Pacific: heterotrophs and mixotrophs. Aquat. Microb. Ecol. 10:273-282.

Street, G.T., P.A. Montagna, & P.L. Parker. 1997. Incorporation of a brown tide into an estuarine food web. Mar. Ecol. Prog. Ser. 152:67-78.

Strom, S. & M.W. Strom. 1996. Microplankton growth, grazing, and community structure in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 130:229-240.

Thingstad, T.F. & R. Lignell. 1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13:19-27.

Thingstad, T.F., Å. Hagström, & F. Rassoulzadegan. 1997. Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol. Oceanogr. 42: 398-404.

Verity, P.G. & V. Smetacek. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130:277-293.

Vopel, K. & G. Arlt. 1995. The fauna of floating cyanobacterial mats in the oligohaline eulittoral zone off Hiddensee (South-west coast of the Baltic Sea). P.S.Z.N. I: Marine Ecology 16:217-231.

Weisse, T., Sceffel-Möser, U. 1991. Uncoupling the microbial loop: growth and grazing loss rates of bacteria and heterotrophic nanoflagellates in the North Atlantic. Mar. Ecol. Prog. Ser. 71:195-205.

Zweifel, U.L., N. Blackburn, & Å. Hagström. 1996. Cycling of marine dissolved organic matter. I. An experimental system. Aquat. Microb. Ecol. 11:65-77.