Background

The Republican era (509-27 BC) of Rome, sandwiched between the overthrow of the monarchy and the ascendency of the emperors, boasted a constitution characterized by checks and balances and a separation of governmental power. Yet it also boasted a growing military, and by the mid-Republican era (4th-1st centuries), Rome was expanding beyond the Italian peninsula into Greece and Africa. This expansion meant the movement of people, both to the newly conquered areas and to Rome and other cities in need of slaves and supplies. Migration during the Republican period, however, has only been investigated by demographers using scant historical records,[1] as bioarchaeology in ancient Rome has focused primarily on the Imperial period, when inhumation succeeded cremation as the dominant burial rite. Human skeletal remains that do exist from the Republican period can therefore provide new and relevant information on migration and lifestyle in this important yet underexamined historical era.

Materials: Castellaccio Europarco

The suburban cemetery of Castellaccio Europarco lay roughly 12km south of the city walls of Rome along the ancient Via Laurentina. Excavation revealed three phases of burial – mid-Republican (4th-3rd centuries BC), late Republican (2nd-1st centuries BC), and early Imperial (1st-2nd centuries AD).[2] The Republican graves were mostly simple pit burials with very few artifacts, suggesting these individuals were from the lower classes of society.[3] Seventeen skeletons were dated based on stratigraphy to Phase 1 (8 subadults under the age of 15 and 9 adults over the age of 30), and eleven skeletons were dated to Phase 2 (4 subadults under 15 and 7 adults over 30).

Results and Interpretation

Of the 28 skeletons, only five from Phase 1 and one from Phase 2 possessed a first molar that could be biochemically tested. All were measured for Sr, but only four were measured for O and C. Two of six individuals are outside of the expected Sr isotope range of Rome,[4] and two of the four individuals are outside of the expected O isotope range of Rome.[5] Further, one of the four individuals tested for C was outside of the expected range for a wheat-based Roman diet.[6]

Interpretation of the data is problematic not only because of the small sample size but also because of the complete absence of comparative osteological and biochemical studies from Rome in the Republican era. This lack of data means, for example, that it is as yet unclear if the higher oxygen isotope values are related to migration or to dietary practices. However, with dramatically different strontium and carbon isotope values, individual ET82, a male in his 30s when he died, makes the strongest case for evidence of immigration to Rome. Geological strontium values tend to be lower in the south of Italy[4] and research has suggested greater consumption of millet in the south as well.[5] It is possible that ET82 migrated to Rome from a more southern location.

Conclusions & Future Prospects

The data from this pilot study are few but represent important information about the lives of the lower classes in Republican Rome. In particular, the data suggest greater physical mobility in the Roman Republic than previously assumed. The type of long-distance migration that is seen as characteristic of the Roman Empire[3] likely has its roots in the mid-Republican period, if not earlier.

Further analysis of other individuals from this early time period, from periurban, suburban, and rural contexts, would constitute significant progress towards our understanding of the lower classes of Republican Rome. As a significant number of slaves were being transported to Italy and around the Mediterranean at this point in history, further research into nonlocals at Rome could help advance the archaeological study of slavery in antiquity.

Acknowledgments

Permission to study the skeletons from Castellaccio Europarco was granted by the Soprintendenza Speciale per i Beni Archeologici di Roma. Strontium isotope analysis was done by the author with the help of Dr. Drew Coleman (UNC-Ch); oxygen and carbon isotope analyses were performed by Dr. Janet Montgomery (Durham U). This study was supported by the NSF (BCS-0223436) and Internet-Grant. The poster was designed by Nelma Bell (UWF).

References