2004-2005
CATALOG |

Table
of Contents Welcome Telephone Directory Academic Calendars Year 2004/2005 Fall Semester 2004 Spring Semester 2005 Summer Semester 2005 University Mission Accreditations Degrees, Areas of Specialization, Minors Admissions After Admission Financial Assistance Student Activities Student Services and Resources Tuition and Fees Military and Veterans Information Registration and Records Academic Policies Graduation and General Degree Requirements Public Service and Research Centers College Mission Statements Undergraduate Degree Programs Master's Degree Programs Specialist Degree Programs Doctoral Degree Programs Course Numbering System Course Listings and Descriptions Administration Faculty Index |
Course Listings/Descriptions Semester offering codes corrected and posted on June 7, 2004. |

MAP-Mathematics: AppliedMAP 2302 Differential Equations . . . . . 3(F,S,SS)Prerequisite: MAC 2313. Introduction to ordinary differential equations; emphasis on linear equations, operator methods, systems of equations. Applications. (Gordon Rule Course: Theoretical Math) MAP 4XXX Introduction to Coding Theory . . . . . 3(S)Prerequisite: MAS 3105. Explores coding theory from a mathematical viewpoint. Focuses mainly on binary codes and codes over fields of characteristic 2. Introduces error-detecting and error-correcting codes and the construction, encoding and decoding of certain families of codes important in engineering and computer science. Offered concurrently with MAP 5XXX; graduate students will be assigned additional work. MAP 4103 Mathematical Modeling . . . . . 3(S)Prerequisite: MAP 2302. Mathematical models of physical problems leading to differential equations. Problems selected from biology, electrical circuitry, mechanics, etc. Methods of solution include Laplace transform, Fourier series, separation of variables and calculus of variations. (Gordon Rule Course: Theoretical Math) MAP 4341 Partial Differential Equations . . . . . 3(S)Prerequisite: MAP 2302. First-order equations, derivation and classification of second-order equations. Solution techniques of boundary value and initial value problems; applications. (Gordon Rule Course: Theoretical Math) MAP 4403 Mathematical Methods for Engineers . . . . . 3(CALL DEPT)Prerequisite: MAP 2302. Complex variables, including derivatives and integrals, singularities, Taylor/Laurent series and residues; Linear Algebra, including Gaussian elimination, determinants, inversion, linear independence, norms, inner product, orthogonality, Gram-Schmidt procedure, eigenvalues and eigenvectors, systems of differential equations. MAP 5XXX Coding Theory . . . . . 3(S)Prerequisite: MAS 3105. Explores coding theory from a mathematical viewpoint. Focuses mainly on binary codes and codes over fields of characteristic 2. Introduces error-detecting and error-correcting codes and the construction, encoding and decoding of certain families of codes important in engineering and computer science. Offered concurrently with MAP 4XXX; graduate students will be assigned additional work. MAP 5336 Ordinary Differential Equations . . . . . 3(F)Prerequisite: MAA 4211 and MAA 4212. Fundamental existence theory, dependence of solutions on parameters, and stability. MAP 6106 Mathematical Methods of Operations Research I . . . . . 3(F)Prerequisite: MAS 3105 or MAS 5107 and STA 4321. Mathematical probability models and distributions; linear programming models; the simplex method; duality and sensitivity analysis; inventory models; queuing theory; simulation. May not be taken for credit by students having credit for STA 6607. MAP 6107 Mathematical Methods of Operations Research II . . . . . 3(S)Prerequisite: MAP 6106, Decision theory and games, PERT/CPM, Markovian decision process integer programming, dynamic programming, reliability and maintenance. May not be taken for credit by students having credit for STA 6608. MAP 6108 Mathematical Modeling and Initial and Boundary Value Problems .
. . . . 3(S)Prerequisite: MAA 4212, MAP 2302, and MAS 3105. Methodology and framework for mathematical modeling. Current topics in applied mathematics will be presented emphasizing the interdependency of mathematics and its applications to physical, societal and other "real world" phenomena. |